Combining Unsupervised and Supervised Machine Learning to Build User Models for Intelligent Learning Environments
نویسندگان
چکیده
Traditional approaches to developing user models, especially for computer-based learning environments, are notoriously difficult and time-consuming because they rely heavily on expert-elicited knowledge about the target application and domain. Furthermore, because the necessary expert knowledge is application and domain specific, the entire model development process must be repeated for each new application. In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised machine learning to reduce the costs of building student models, and facilitate transferability. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data). Despite limitations due to the size of our datasets, we provide initial evidence that the framework can automatically identify meaningful student interaction behaviors and can be used to build user models for the online classification of new student behaviors online. We also show framework transferability across applications and data types.
منابع مشابه
Combining Unsupervised and Supervised Classification to Build User Models for Exploratory Learning Environments
In this paper, we present a data-based user modeling framework that uses both unsupervised and supervised classification to build student models for exploratory learning environments. We apply the framework to build student models for two different learning environments and using two different data sources (logged interface and eye-tracking data). Despite limitations due to the size of our data...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملCombining Classifier Guided by Semi-Supervision
The article suggests an algorithm for regular classifier ensemble methodology. The proposed methodology is based on possibilistic aggregation to classify samples. The argued method optimizes an objective function that combines environment recognition, multi-criteria aggregation term and a learning term. The optimization aims at learning backgrounds as solid clusters in subspaces of the high...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملPresentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures
Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007